Improving vocabulary independent HMM decoding results by using the dynamically expanding context
نویسنده
چکیده
A method is presented to correct phoneme strings produced by a vocabulary independent speech recognizer. The method first extracts the N best matching result strings using mixture density hidden Markov models (HMMs) trained by neural networks. Then the strings are corrected by the rules generated automatically by the Dynamically Expanding Context (DEC). Finally, the corrected string candidates and the extra alternatives proposed by the DEC are ranked according to the likelihood score of the best HMM path to generate the obtained string. The experiments show that N need not be very large and the method is able to decrease recognition errors from a test data that even has no common words with the training data of the speech recognizer.
منابع مشابه
Spoken Commands in a Smart Home: An Iterative Approach to the Sphinx Algorithm
An algorithm for decoding commands spoken in an intelligent environment through iterative vocabulary reduction is presented. Current research in the field of speech recognition focuses primarily on the optimization of algorithms for single pass decoding using large vocabularies. While this is ideal for processing conversational speech, alternative methods should be explored for different domain...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملSelf-organization in mixture densities of HMM based speech recognition
In this paper experiments are presented to apply Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ) for training mixture density hidden Markov models (HMMs) in automatic speech recognition. The decoding of spoken words into text is made using speaker dependent, but vocabulary and context independent phoneme HMMs. Each HMM has a set of states and the output density of each state is...
متن کاملA speaker-independent continuous speech recognition system using continuous mixture Gaussian density HMM of phoneme-sized units
AbsfructThis paper describes a large vocabulary, speakerindependent, continuous speech recognition system which is based on hidden Markov modeling (HMM) of phoneme-sized acoustic units using continuous mixture Gaussian densities. A bottom-up merging algorithm is developed for estimating the parameters of the mixture Gaussian densities, where the resultant number of mixture components is proport...
متن کاملLarge vocabulary speech recognition with context dependent MMI-connectionist / HMM systems using the WSJ database
In this paper we present a context dependent hybrid MMI-connectionist / Hidden Markov Model (HMM) speech recognition system for the Wall Street Journal (WSJ) database. The hybrid system is build with a neural network, which is used as a vector quantizer (VQ) and an HMM with discrete probablility density functions, which has the advantage of a faster decoding. The neural network is trained on an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998